MATH 1010E University Mathematics
Lecture Notes (week 11)
Martin Li

1 Indefinite vs definite integrals
So far we have learned two kinds of integrals: indefinite and definite. Given

a function f(z), the indefinite integral concerns finding a primitive function
F(x) such that F'(z) = f(z), we write

/f(a:) dz = F(z) + C.

On the other hand , the definite integral concerns finding the area under the
graph of y = f(z) above some closed and bounded interval [a, b].
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If f is continuous on [a.b], then we can calculate the definite integral
using the Riemann sum

b n
[ #@ ds = tim 3 s@)Aw.
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Even though these two kinds of integrals are defined very differently, they
are indeed closely related to each other through the Fundamental Theorem
of Calculus: which says that if F'(z) = f(z), then

b
/ f(z) dz = F(b) — F(a).

In other words, definite integrals can be computed by first finding the prim-
itive function F'(x) using indefinite integrals and then doing a substitution.
Therefore, if we can find the indefinite integral, then the definite integral
can be easily found. So the main question is the following:

Question: Given f(z), when can we “find” the primitive function F(z)?



There are two meanings of “finding” a primitive function: whether it
exists at all and whether we can write it down in terms of elementary func-
tions. The second part is more complicated since it is not universal to say
which functions are “elementary”. For example, the indefinite integral

2 .
/3:“ sinz® dz

is very hard to find, but we can ask if a primitive function F(x) should exist
in the first place, without knowing a formula for F(z). This is answered by
one part of the Fundamental Theorem of Calculus.

2 Fundamental Theorem of Calculus I
The first part of fundamental theorem of calculus basically says that conti-

nuity is all that is required to guarantee the existence of a primitive function.

Theorem 2.1 (Fundamental Theorem of Calculus I) If f : [a,b] —
R is a continuous function, then the function F : [a,b] — R given by

F(z) ::/ f@t) dt
is well-defined, differentiable in (a,b) and satisfies
F'(z) = f(z) for all z € (a,b),
i.e. F(x) is a primitive function of f(z).

Remark 2.2 The theorem does not say anything if f is not continuous. In
particular, it does not mean that a primitive function would not exists if the
function f is not continuous. On the other hand, the theorem only tells us
about the existence, but not how to find a formula for F(z) (note that it is
defined in terms of a definite integral).

Before we discuss the proof of Theorem 2.1, we need to study more
properties of definite integrals (since F'(z) is defined as such).

3 Preliminary results on definite integrals

The main result in this section is the integral mean value theorem (Theorem
3.X), which is similar in spirit to the differentiable mean value theorem which
says that

= (&) for some £ € (a,b)
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if f is differentiable on (a,b) and continuous on [a, b].
We need the following theorem about continuous functions, which says
that continuous functions cannot “jump”.

Theorem 3.1 If f:[a,b] = R is a continuous function, let

m:= min f(x) and M := max f(z),
z€[a,b] z€|a,b]

then for any c € [m, M|, there exists £ € [a,b] such that f(§) = c.

Note that £ is not necessarily unique. See for the picture below:
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Note that the continuity assumption is important. If the function f
is continuous, the theorem fails even if the maximum and minimum are
defined. For example,
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The next result says that definite integrals preserve the oyglering.
Theorem 3.2 If g, f,h: [a,b] = R are continuous functions such that
g(z) < f(z) < h(z) for allx € [a, b],

/abg(:v) dz < /abf(:r) dz < /abh(z:) dz.

then



Question: Try to give a proof of Theorem 3.2 above. Note that you
can reduce it to the case that if f(z) > 0 on [a, b, then fabf(”/) dz > 0.

Question: Do we have a similar statement for differentiation? That is,
does f(z) > 0 implies f'(x) > 07

We now state the main result in this section.

Theorem 3.3 (Integral Mean Value Theorem) Let f : [a,b] = R be a
continuous function. Then

b
[ @ dz=re0-a)
for some & € [a,b].

Proof: Since f is continuous on a closed and bounded interval [a, b], by the
Extreme Value Theorem,

m:= min f(z) and M := max f(x) exist.
z€[a,b] z€[a,b]

Therefore,
m< flz) <M for all € [a, b].

By Theorem 3.2, we have

b b b
m(b—a)=/ md:cg/f(z‘)d:cg/ M dz = M(b— a).

a
Dividing by b — a we get

1
b—a

m <

b
/ f(z)de < M.

By Intermediate Value Theorem, there exists £ € [a, b] such that

b
1) =5 [ @) e

This proves the theorem after multiplying (b — a) to the left hand side.



4 Proof of Fundamental Theorem of Calculus I
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Given f continuous on [a,b], the function r

F(z) = / ") dt | é
7

is well-defined since f is also continuous on each subinterval [a, z].
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Claim: F'(z) = f(z) for all z € (a,b).
To prove the claim, we use the definition of derivative. Let h > 0. b «x

Pexh=Pe) - (™ e [ 1o )
_ ,—1L</:+hf(t) dt+/:f(t) dt)
_ % / ) di
= ~(7(©) R
= f(&)

for some ¢ € [x,x + h]. The case is similar for h < 0. Therefore, we have
proved that, by taking h — 0,

F'(z) = lim f(€) = f(z),

E—zx

where the last equality holds since f is continuous.

Remark 4.1 We can rephrase the Fundamental Theorem of Calculus I as
= [ 1w a=sw
i ). = f(z).

In other words, if we integrate a function f first and then differentiate, we
get back the original function.

What about if we differentiate first and then integrate? This is answered
by the second part of Fundamental Theorem of Calculus.



5 Fundamental Theorem of Calculus IT

Theorem 5.1 (Fundamental Theorem of Calculus II) Let F : [a,b] —
R be a differentiable function such that F'(x) is continuous on [a,b]. Then,

Remark 5.2 We can also rephrase the above formula as

dx

Therefore, differentiating first and then integrate gives us the original func-
tion “in some sense”. The two Fundamental Theorems thus say that differ-
entiation and integration are reverse processes of each other.

% d
/a —F(z) dz = F(b) — F(a).

Proof: As in Fundamental Theorem of Calculus I, we define the function
G :la,b] » R by

Gla)i= [ 1oy at
and we know that G'(z) = f(z) for Al 2 e (a,b). If we let H : [a,b] — R be
H(z) := F(z) - G(a).
Note that
H'(z) = F'(z) - G'(z) = f(z) — f(&) =0  for all z € (a, b).

Therefore, we know that H is a constant function (see assignment 2). In
particular, we must have H(a) = H(b). On the other hand,

mw=nw—mw=mw—/?ma=Fw—o=ﬂw

b
H(b) = F(b) — G(b) = F(b) — / f(z) da.

Therefore, combining these, we have

b
F(a):F(b)—/ f(z) dz.

Rearranging gives

/abF’(x) gy = /abf(.r) dz = F(b) — F(a).



6 Integration by parts

From the Fundamental Theorem of Calculus II, calculating definite integrals
amounts to first finding the indefinite integral F'(z) and then doing substitu-
tion. So we focus on developing more techniques to find indefinite integrals.
We have already learned how to integrate some elementary functions like
", sinz or €. We have also learned the method of u-substitution which is
a consequence of chain rule in differentiation.

There is another useful integration technique called integration by part,
which is a consequence of the product rule in differentiation. Recall that
the product rule says that if u and v are two differentiable functions, then

d du dv
E(uv) =v——+ U
We can express it in “differential form” as

d(uv) = vdu + udv.

If we integrate on both sides and apply the fundamental theorem, we get

uv = /d(uv) = /v du—i—/u dv.
/ vdu =uv — / u dv.

In other words, we can switch u and v with an induced “~” sign and also
a new product term wv. This is called integration by part. Let us look at a
few examples.

Therefore, we have

”

Example 6.1 Consider the integral

/ Inz dx.
If we let v =Inz and w = z, then integration by part gives
/lnm dz = mlna;—/xd(lnx)

1
= :zln:v—/:n-—d:r
z

= zlhz—-2+C.

One can easily check the answer by differentiating

1
(zlnz+z) =z-—+Ihz—-1=Inz.
&z



Example 6.2 Consider the integral
/ 22e2® dr.

Note that d(—1e~%*) = e~2%dz, therefore

1 .
/126_21 dz = /:I;Qd(—ae_z”)

I
|
|
=
b
)
I

ml
o
&)
a8
—
)
)
S—"

Il
|
|
)
®
b
+
8
Q
—~
|
|
m|
N
8
Nz

Il

|

N |
8
@

b

+

\\ | =

8
@

b
U
Q

_ 1 2 2z 1 —2z 1 -2z

= —51 e — 5176 + 3 e dx

_ 1 2 _—2z 1 -2z 1 —2z

= —§$ e - §’L‘6 - Ze +C
1

= —16—29:(2124-21“{-1)—}-0

Example 6.3 Consider the integral
/ ztan~!z dz.

Sometimes we have to choose how to apply integration by part. The idea
is that we want the integral to simplify as much as possible. Recall that

—tan"lz = L and i(sctan_laz) =tan" 'z + ——
dz 1+ 22 dz 1+ 22
Let’s try both ways to se which one is simpler. Using the first observation.

2
/xtan_lmd:v = /tan_lmd(%)

T




Using the second approach.

/wtan_lxdm = g* tan'lrL'—/ﬂ: d(z tan™! )

2
T
dx

= zltan"lz— [ ztan o+ —
1+ 22
= z?tanlz— (z —tan"'z) — /agtan—l zdx
Putting the integral back to the left hand side, we get
Z/Itan_l xdr=z’tan 'z — (z —tan~'z) + C,
which gives us the same answer after dividing by 2.

Example 6.4 Consider the integral

/sin_1 z dz.
] S, S , —
sinT"xd = xzsinT xz— [ zd(sinT z)

== a:sin_la,'—/l—'dac
V1 — 22

1 [d(1-2?

2) Vi—=2

= zsinlz+vV1-22+4C.

= zsin 'z +

7 A review of trigonometric identities

When dealing with integrals of trigonometric functions, it is often useful to
apply some trigonometric identities to simplify or transform the integrals.
Let us review some trigonometric identities in this section.

Proposition 7.1 (Basic identities) The following identities hold:
(a) cos®z +sin?x = 1.

(b) 1+ tan’®z = sec’x.



(c) 1+cot?z = csc?x.
Note that (b) and (c) follow easily from (a).

Proposition 7.2 (Sum-to-product Formula) The following identities hold:
(a) cos(x +y) =cosxcosy — sinxsiny.

(b) sin(x +y) = sinz cosy + cosz sin y.

tanz + tany
tan(z +y) = — .
(c) ( v) 1 -tanztany

We can prove (a) and (b) easily using Euler’s formula:

10

e =cosf +isiné.
Recall that i> = —1. From the multiplicative property of exponential func-
tion,
e'i(a:—i—y) _ eixeiy.

Using Euler’s formula,
cos(z +y) +isin(z + y) = (cosz + ¢sinz)(cosy + isiny).

Expanding the right hand side and compare coefficients, we obtain identities
(a) and (b).

Exercise: Derive (¢) from (a) and (b).

Setting = y in the sum-to-product formula, we obtain the following.

Proposition 7.3 (Double angle formula) The following identities hold:

2 2

(a) cos2z = cos®z —sin’?z = 1 — 2sin?z = 2cos?z — 1.

(b) sin2z = 2sinz cosz.

2tanzx
c) tan2x = ———.
(c) 1—tan?z

A direct consequence of (a) is

. 1—cos2z 2 1+ cos2z
sin“x = —s and cos“ T = =

4 <

This is useful since the power is reduced!

10



Proposition 7.4 (Product-to-sum formula) The following identities hold:
(a) cosz cosy = %(cos(z + y) + cos(z — y)).

(b) coszsiny = 5(sin(z + y) — sin(z — y)).

1
2
(c) sinzsiny = 3(cos(z — y) — cos(z +y)).

Exercise: Use the sum-to-product formula to prove Proposition 7.4

above.

8 Trigonometric integrals

Example 8.1 Consider the integral

/ sin?z dz
We can use the double angle formula twice to do this.
/sin":v dz = /(sin2 z)? dx
/ <1 — coS 2:5) .
= —'2 (lf[:

1
= Z/(1—2cosi)av—l—cosz2a:)da:
1 1+ cos4
= —/(1—2c052m+_+ws x) dx
4 2
1 cosdx

3
= Z/(§—2c0821'+ ) dx

1/3 sin4x
= —|(=-xz—sin2 .
1 <21; sin 2x + 3 > +C

Question: Evaluate [sin?"z dz and [ cos®® z d.

Example 8.2 Consider the integral

/ sin 3z sin 5z dzx.

11



Using the product-to-sum formula, we get

1
/sin 3xsinbz dx = / 5(cos(—2$) — cos 8z) dx

Z

= /(cos 2z — cos8x) dx

sin 2 in &:
< in2z sin E) L

N = N~

2 8
Question: Evaluate [ cos2zsin 3z dz.
Example 8.3 Consider the integral
/ cos zsin’ z da.
Sometimes we can just do a simple u-substitution to handle trigonomet-

ric integrals.

. 5
: . . sin® x
/cos:l;sm4 rdr= /sm4 z d(sinz) = 3 +C.

Question: Evaluate [ cos® zsinz dz.

Example 8.4 Consider the integral
/ sin? z cos?  dx

Using the double angle formula,

2
sin2x\~
/SinQICOSQI‘ de = /< m9 I) dz
1 2
= — in” 2z d:
4/sm T dx

1 1 — cos4dx
= —_ —dt‘
4/ 2 v

1 /x sindzx
= z(r 3 )*G

Let us look at two more examples which are a bit trickier.



Example 8.5 Consider the integral

/ sec® z dz.

/sec3:t dx = /sec x d(tanz)
= secxtanz — /tan:v d(secz)
= secztanz — /tanQ:vsecx dz
= secztanz — /(sech —secz) dz
= secztanxz +In|secx + tanx| — /sec?’:u dx
This implies that
3 1
gec” & dx = 5(secrntanx +In|secx + tanz|) + C.
Example 8.6 Consider the integral
sinz
[
COSx +sinx
Using the sum-to-product formula for tan:
sinx tanx
s = [
cosx +sinx 1 +tanz
1
= s / (1 — tan(

1
— 3($+ln|sec(

- x)) dx

—2z)|)+ C.
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